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Abstract: The evolving field of microbiome research offers an excellent opportunity for biomarker
identification, understanding drug metabolization disparities, and improving personalized medicine.
However, the complexities of host–microbe ecological interactions hinder clinical transferability.
Among other factors, the microbiome is deeply influenced by age and social determinants of health,
including environmental factors such as diet and lifestyle conditions. In this article, the bidirec-
tionality of social and host–microorganism interactions in health will be discussed. While the field
of microbiome-related personalized medicine evolves, it is clear that social determinants of health
should be mitigated. Furthermore, microbiome research exemplifies the need for specific pediatric
investigation plans to improve children’s health.
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1. Introduction

The evolving field of the microbiome has revolutionized biomedical research in recent
years, where it has emerged as an independent research specialty. In medicine, applied mi-
crobiome research offers new opportunities, including biomarker discovery, development
of therapeutic targets, understanding of disparities in drug metabolization, and avenues
for personalized medicine [1]. However, the complexities of the host–microbe ecological
interactions hinder clinical transferability.

Personalized medicine (PM), also called precision or individualized medicine, is a
promising field that may help clinicians determine which medical treatments will work best
for each patient [2]. The simplest definition would be “the provision of the right treatment
to the right patient at the right dose at the right time” [3]. As not all patients respond in the
same way to a given therapy, PM has the potential to make medical practice more efficient
based on genetic, biological, or psychosocial characteristics [4–6]. All these factors are to be
taken into account for medical management, together with patient preferences.

Research in pharmacogenomics, proteomics, and metabolomics has already led to the
identification of several genes, mRNA, proteins, and metabolites that can act as biomarkers
and reliably reflect inter-individual variability in disease expression, with the potential
to predict outcomes. Different biomarkers are being tested in experimental studies, but
only a few have been already integrated into clinical practice [7]. Today, the microbiome is
envisioned as one of the most critical and hypothetically modifiable markers of disease [1].
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While the evidence supporting the interaction between the human host and the
microbiome increases, the identification of microbiome-related biomarkers and the un-
derstanding of the role of microbiota in drug metabolization are also the focus of intense
research. However, whether genetic or related to microbiota, validation of biomarkers
among adults does not necessarily imply its usefulness in children, as gene expression
and microbial colonization vary during childhood. It is known that the microbiome is
established mainly during the first year of life, although fluctuations in the ecosystem
occur over time together with lifetime changes [8]. Beyond age and genetic factors, the
microbiome is deeply influenced by geographical, dietary, and lifestyle-related factors [9].
Studies suggest that these factors may be especially relevant in shaping the microbiome
during childhood [7,8]. Social determinants of health have a direct impact on undoubtfully
critical factors for health, such as malnutrition, access to treated water, or health care. In
comparison, their effect on microbiota composition and how much these changes may
contribute to health and disease may seem trivial and has not been well established.

2. Social Determinants of Health and the Microbiome in Children

Social inequities, poverty, or racism have profound impacts on life expectancy [3]. De-
fined by the World Health Organization as the “conditions in which people are born, grow,
work, live, and age and the wide set of forces and systems shaping the conditions of daily
life” [10], the so-called social determinants of health (SDOH) are known to have a power-
ful effect on health outcome [11–13]. Disparities among children’s health and healthcare
utilization along demographic lines such as race and income have long been documented
as factors influencing children’s morbidity and mortality [10]. Although SDOH influence
health and well-being across individuals of all ages, in children and young people, physical,
social, and emotional capabilities that develop early in life provide the basis for life course
health and well-being [14]. Emerging data demonstrate that exposure to violence, food
scarcity, poverty, and lack of housing, as well as race, ethnicity, gender, education, and
health literacy, are potent determinants and comorbid issues for many conditions [13]. Re-
cently, the human microbiome has been identified as a potentially modifiable determinant
of health, which is highly determined itself by social and geographical conditions.

Although our understanding of the impact of the human microbiome on health is still
in the early stages, current knowledge indicates that the interaction between microbiota
and the host is strong. Around 1013 microorganisms, including bacteria, viruses, fungi, and
protozoa, accounting for a total mass of 0.2 kg [15], inhabit our bodies and constitute the
human microbiome. An overwhelming amount of data has underlined the influence of
the first years of life to shape the microbiome–immune system interactions in recent years.
Very early in life, the microbiome is first established by the colonization of microorganisms
from the mother’s skin, genital tract microbiota, breast milk, and after the introduction
of complementary feeding [16,17]. Factors related to the mode of delivery, antimicrobial
exposure early in life, or breast-feeding duration have been shown to impact microbiota
acquisition [8,16]. Furthermore, it is known that these factors condition variations in gut
microbiota that are associated with an increased risk of suffering from allergic diseases,
asthma, celiac disease, or inflammatory bowel disease [17,18]. Geographic location and
ethnicity also determine variability in the ecosystem [19], together with well-known dietary
and lifestyle-related factors [17].

These environmental factors are deeply related to socio-economic conditions, includ-
ing dietary restrictions, hygiene habits, housing conditions, and access to treated water or
health care. Dietary habit modifications in the course of migration, for example, are key
in shaping the gut microbiota. An ecosystem enriched in microorganisms specialized in
degrading fibers, characteristic of children living in limited-resource settings, can be an
adaptation to enhance energy obtention from the diet but could turn deleterious in the
presence of a westernized diet [20].

The geographical variability of vaccine response is another compelling example of
the critical implications of host–microbiome and environmental interactions [21]. In low-
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income countries, the poorer immunization rates achieved by oral vaccines (cholera, po-
liovirus, and rotavirus) have been classically related to environmental, socio-economic, or
nutritional conditions [22]. However, it may also be explained by changes in the intestinal
microbiota composition [21]. In a kind of infinite loop, dietary factors have a clear impact
on the microbiome. Still, changes in the microbiome can lead to behavioral adaptations,
leading to a subsequent modification in dietary habits [23]. Among other challenges in
the field, causality is always questionable in most microbiome studies in humans. Autism
spectrum disorder (ASD), common comorbidities of which are functional gastrointestinal
disorders [24], is an excellent example of this bidirectionality. Manipulation of the gut
microbiome could offer a promising treatment option for children with ASD. Recently,
significant changes in serum neurotransmitters and an improvement in behavioral and
gastrointestinal symptoms were observed during a fecal microbiota transplantation trial in
children diagnosed with autism [25]. Yet, the longitudinal follow-up would be essential for
further understanding of the so-called “gut-brain” axis.

The fact that the gut microbiome in children living in resource-limited settings has
remained underreported in microbiome research is another clear example of how social in-
equities impact health from the very primary step of knowledge generation. Nevertheless,
consistent data illustrate how pathogenic species are often detected in higher abundance
among malnourished children living in low-income settings [19,26]. While there is agree-
ment that nutrition and gut microbiota are linked, particularly in vulnerable populations
such as children, it is highly controversial to what extent the theoretically modifiable human
microbiome is a potential therapeutic target. Fecal microbiota transplantation has shown
efficacy in very limited settings (recurrent Clostridioides difficile associated diarrhea). Still,
studies addressing the role of microbiota modulation with probiotics, prebiotics, or dietary
interventions in treating and recovering from infections or inflammatory diseases have
raised controversial results [27–29]. Although these treatments’ impact and therapeutic
potential have not been well-established yet, the evidence supports the need to implement
measures to prioritize food security worldwide. Making nutritional modifications in areas
with limited resources is a challenge, but it is also a priority to improve health.

Untangling the crossroad of SDOH, the human microbiome, and human health is
a formidable challenge (Figure 1). Unfortunately, because the individual’s microbiota
is fundamentally established during the first three years of life (from childbirth to the
consolidation of the adult diet) [17], the impact of socio-economic factors on the microbiome
composition might be more significant in children compared to adults. An “unfavorable”
microbiota may cause lasting damage [20,30]. Hence, the idea of the bidirectionality of
social and host–microorganism interactions in health should be integrated into research
and clinical perspectives from today. In addition to the possible therapeutic implications,
some of them already mentioned, modification of the microbiota in childhood has been
postulated to be key in the prevention of infections [31], allergy [32], asthma [33], or even
cancer in childhood [34–36]. Therefore, the inclusion of children in clinical trials evaluating
dietary modifications and their impact on various diseases and overall health should
be prioritized.
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Figure 1. Human microbiome at the crossroad between social determinants of health and personalized medicine. 
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ertheless, diet is increasingly appreciated to have a tremendous impact on many aspects 
of life, including health and disease. Personalized nutrition aims to characterize inter-in-
dividual host and microbiome variations and generate data-driven personalized dietary 
recommendations [40] and is becoming more and more popular worldwide. The concept 
would be as follows: first, the diet gives rise to a specific microbiota for each person. Sec-
ond, characterization of the individual’s microbiome and gut-derived metabolites would 
be directed towards a personalized nutrition plan. 

This holistic approach does not seem feasible for disease treatment, where personal-
ized medicine requires the identification of key proteomic, metabolomic, or microbiome-
related biomarkers. In fact, the search for biomarkers that allow anticipating and moni-
toring disease has been a constant in medical research. The potential applications of mi-
crobiota-related biomarkers and metabolic/immune check-points in all areas of medicine, 
from obesity to cancer, are endless. Most attempts to personalize the approach based on 
microbiome contributions to human health come from research in diabetes [41], cardio-
vascular disease [42], metabolic syndrome/obesity [43], and cancer [44]. Short-chain fatty 
acids (SCFAs) such as butyrate, acetate, or propionate [45] are critical drivers of T-cell 
subset proliferation and activity [46], and they are produced after fermentation of complex 
dietary carbohydrates by gastrointestinal bacteria. These metabolites have been suggested 
to influence both maternal and newborn down-regulation of pro-inflammatory responses, 
playing an essential role in tolerance phenomena and atopy and asthma in childhood [47]. 

The diagnostic and therapeutic potential of SCAs is being explored in different set-
tings, from allergies to autoimmune disorders such as systemic lupus erythematosus [48]. 
In addition, SCFAs and other microbiota-derived metabolites such as lipopolysaccha-
rides, beta-cresol, and bacterial toxins in blood and urine are being explored as diagnostic 
tools and for early intervention in autism spectrum disorder [49]. In this context, despite 
the uncertainty regarding the cause-to-effect relationship, the diagnostic potential is ap-
pealing, and the design of personalized treatments seems promising. The tumor microen-
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3. Personalized Medicine and the Microbiome

Therapeutic efforts to target the microbiome have shown, as mentioned, contradictory
results [37–39]. Modulation of the microbiota with probiotics, prebiotics, dietary interven-
tions, or even fecal microbiota transplantation is under research. However, apart from
the treatment of Clostridioides difficile-associated diarrhea, there have been few impacts in
terms of clinical practice outside research. Beyond the hospital environment, nevertheless,
diet is increasingly appreciated to have a tremendous impact on many aspects of life,
including health and disease. Personalized nutrition aims to characterize inter-individual
host and microbiome variations and generate data-driven personalized dietary recommen-
dations [40] and is becoming more and more popular worldwide. The concept would
be as follows: first, the diet gives rise to a specific microbiota for each person. Second,
characterization of the individual’s microbiome and gut-derived metabolites would be
directed towards a personalized nutrition plan.

This holistic approach does not seem feasible for disease treatment, where personal-
ized medicine requires the identification of key proteomic, metabolomic, or microbiome-
related biomarkers. In fact, the search for biomarkers that allow anticipating and mon-
itoring disease has been a constant in medical research. The potential applications of
microbiota-related biomarkers and metabolic/immune check-points in all areas of medicine,
from obesity to cancer, are endless. Most attempts to personalize the approach based on
microbiome contributions to human health come from research in diabetes [41], cardio-
vascular disease [42], metabolic syndrome/obesity [43], and cancer [44]. Short-chain fatty
acids (SCFAs) such as butyrate, acetate, or propionate [45] are critical drivers of T-cell
subset proliferation and activity [46], and they are produced after fermentation of complex
dietary carbohydrates by gastrointestinal bacteria. These metabolites have been suggested
to influence both maternal and newborn down-regulation of pro-inflammatory responses,
playing an essential role in tolerance phenomena and atopy and asthma in childhood [47].

The diagnostic and therapeutic potential of SCAs is being explored in different set-
tings, from allergies to autoimmune disorders such as systemic lupus erythematosus [48].
In addition, SCFAs and other microbiota-derived metabolites such as lipopolysaccharides,
beta-cresol, and bacterial toxins in blood and urine are being explored as diagnostic tools
and for early intervention in autism spectrum disorder [49]. In this context, despite the
uncertainty regarding the cause-to-effect relationship, the diagnostic potential is appealing,
and the design of personalized treatments seems promising. The tumor microenvironment
is another focus of intense research nowadays. In colorectal cancer, gut microbiota biomark-
ers have gained attention for their potential for early non-invasive diagnosis, with good



Children 2021, 8, 1191 5 of 7

sensitivity, specificity, and even cost-effectiveness [50]. A similar approach has been made
in esophageal cancer [51], and clinical trials are ongoing for fecal microbiota transplantation
as an immunomodulatory strategy to improve response to treatment among advanced
lung cancer patients [52].

The future clinical relevance of the microbiome and microbiota-derived compounds
as new biomarkers for diagnosis and targeted interventions in medicine is unclear. Still,
it represents an important proportion of options being explored today for personalized
medicine. Unfortunately, most of these investigations will not be transferable to children,
as the evolving nature of the microbiome impairs us from extrapolating adults’ data. To
bring the promise of personalized medicine to children, specific pediatric investigation
plans that contemplate the design of studies aimed at typical childhood pathologies and the
inclusion of children in clinical trials are required. Plasticity might be more remarkable in
children in terms of targeting the microbiome, and achieving long-lasting effects might be
easier in a non-established ecosystem, making it even more important to prioritize pediatric
investigation in the field. Longitudinal studies, together with new tools for a functional
approach to the microbiome and an ecological perspective, are required to deepen our
understanding of such a complex field.

4. Conclusions

To what extent the study of the microbiome will have clinical implications is still
an unanswered question, but promising research points towards the development of a
microbiome-based personalized medicine. Microbiome composition is deeply influenced
by socio-economic factors, especially during childhood. While the field of microbiome-
related personalized medicine evolves, it is clear that SDOH can and should be mitigated.
Improving living conditions and fighting the unequal distribution of power, money, and
resources is crucial for children. Due to the evolving nature of the microbiome, children will
need to be the focus of research if the aim is to bring personalized medicine to pediatrics.
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