

Al for drug efficacy and safety.

XIV FORESIGHT TRAINING COURSE
The health emergency: regulatory crash and future perspectives
December 10th, 2021

researchers

"Machines will not replace physicians, but physicians using AI will soon replace those not using it"

researchers

-Antonio Di Ieva THE LANCET

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(19)32626-1/fulltext

Nov 15, 2019: DOI: https://doi.org/10.1016/S0140-6736(19)32626-1

1. Tech co: Al/healthcare.

2. We map all drugs against all targets and all diseases.

3. Pre-clinical/early clinical in rare diseases of mitochondrial origin.

The CPIDS Association of America

The CP

2009-2019

2020-2021-

Recognition

Partners

Forbes; CIO Bulletin; Deep Knowledge Analytics; Business Insider

[X]pandemia[™]

Not all Als are created equal: e.g. ML is domain-specific

2. It needs "training sets" or models of known "somethings".

1. ML matches and classifies against known scenarios.

3. ML does not predict or offer "unknown-unknowns".

Many Moves –

But few elements to move

Few Moves –

But many elements to move

Many Moves –

But few elements to move

Few Moves –

But many elements to move

But...Medicine has

MANY MOVES and

MANY ELEMENTS

A different Al doctrine: Machine Building

How Project ProdigyTM works

1.

Data ingestion and extraction.

48 categories; Over 30 sources 2.

Individual profile building.

Over 2 MM profiles.

48-dimensional profile for every drug, disease, gene, side effect etc.

3.

Database generation.

All vs. All database of drugsdiseases-genes-side effects 4.

Predictions.

Individual profiles are compared and ranked, built again by recombining their elements, and reranked.

Use Case #1: Multiple Sclerosis - New targets/assets,100 days

Problem Statement:

- 1. In MS, can we find **new targets** and then new therapeutic entities?
- 2. We want a **different class** than auto-immune drugs that have major side effects.
- 3. We need this **Very quickly.**

Classical Hypothesis: Auto-Immune MoA
OBVIOUS

2

New Hypothesis:

Mitochondrial dysfunction MoA

NON-OBVIOUS

3

Use Case #2: Atopic dermatitis target ID and initial chemistry

- 1. Identified and ranked 5,804 targets.
- 2. Identified 9 initial chemistries.

Use Case #3: Nieman Pick A target ID and initial chemistry

Biovista / Ochoa Center for Molecular Biology (Madrid)

Use Case #4: Prioritizing assets – optimal asset use

Six Assets: Prioritize/Predict

Performance:

Benefit: 64%, 3-5 years prior

Use Case #5: Prioritizing indications for repositioning

ALK: 11,904 papers; How many diseases? 397 Days (30 papers /day) to extract/FTE

2,641 disease set "seen" in 0.1 sec, updated constantly

Use Case #6: Post Covid-19, targets and rapid prototype drugs

Same outcome: e.g. ARDS

Mechanistic trigger: Unclear- multiple steps.

Converging steps

Mechanistic trigger: Unknown-multiple steps.

Underlying condition: COPD

Different starting points

Underlying condition: SARS-Cov2

The world before and after Covid-19

Cover Date: 15 May 2017

Cover Date:

27 June 2020

Cover Label April 2

Core idea: Use Covid-19 as the new starting point to develop medicines for other diseases.

What is a PASC complication in Covid-19 is a stand-alone disease already. Examples:

ARDS
Epilepsy
Kawasaki
Kidney dysfunction
Myasthenia
Pancreatitis

...

Learning from different starting points

Three different starting points: One new target set.

Current data for just the first patient group: ARDS

Raw data:

18,003 initial triggers

Deep triage:

New target family Four initial NTE candidates

Use case #7: Benefit AND Risk Linking target biology to SAEs

PMID: 26070591 DOI: 10.2337/dc14-2515

https://doi.org/10.1007/s00204-020-02788-1

Benchmarking benefit AND Risk: 5-year study

Sample for Benefit: 103 drugs

Sample for Risk : All approved APIs

Performance:

Benefit: 64%, 3-5 years prior

Risk: 70%+, 5 years prior

Novelty vs. Risk

Obvious; Known

Non-Obvious

Literature:	Significant-Explicit	Recent; Indirect	Sparse; Non-explicit
IP:	Crowded; Unlikely	Possible	Available
Models:	Multiple	Few	Unclear
Clinical:	Available	Starting	N/A
Market:	Follower	Follower	Leader

Type:

Risk:

ļ

Moderate

Riskier

Ш

Reward:

Follower

No/Little

Possible

Very High

Summary

I have target(s):	I need target(s):	I need initial drugs fast
Prioritization SAE impact Subpopulations	MoA audit	MoA matching
Indication audit	Prioritization SAE impact Subpopulations	Prioritization SAE impact Subpopulations
Novelty vs Obviousness	Novelty vs Obviousness	Novelty vs Obviousness

Summary

THANK YOU!

FDA: Darrell Abernethy

Clalit: Naomi Gronich, Idit Lavi,

Gad Rennert

Biovista: Spyros Deftereos, Effie Lekka,

Vassilis Virvilis, Christos Andronis,

Andreas Persidis

Aris Persidis, arisp@biovista.com