

Harnessing the Power of Real World Data

Gabriella Pasciullo, MD

X Foresight Training Course
The European Medicines Regulatory Network: Present and Future

October 27, 2017

Topics

- About bluebird bio
- Real world data: What it is and why it's important in drug development
- Developing gene therapy for β -thalassemia: The role of real world data

Our Strategic Intent

Severe Genetic Diseases

Hematopoietic Stem Cells (HSCs)

Immunotherapy

T Cells

- Lentiviral Gene Delivery Pure, Potent, Reproducible, Scalable
 - Global Manufacturing Platform Virus and Drug Product
 - Genome Editing Platform MegaTALs

bluebird Pipeline Overview

Product Candidates	Program Area	Preclinical	Phase 1/2	Phase 2/3	Rights/Partner
	CNS Diseases				
Lenti-D™ Drug Product	Cerebral ALD				Worldwide
	Rare Hemoglobino	pathles			
LentiGlobin® Drug Product	Transfusion-Depend	ent ß-thalassemia*			Worldwide
	Severe Sickle Cell Di	sease			Worldwide
	Oncology				
bb2121 BCMA	Multiple Myeloma				Celgene
Next Gen BCMA	Multiple Myeloma				Celgene
Five Prime Target	Undisclosed				Worldwide
HPV-16 E6 TCR	HPV-associated Can	cers			Kite Pharma
Viromed Target	Undisclosed				Worldwide excluding Korea
Other Programs	Undisclosed				Worldwide
	Research				
Early Pipeline	Undisclosed + Gene	Editing			Worldwide

[&]quot;The current clinical trials for LentiGlobin are Phase 1/2 studies that may provide the basis for early conditional approval in some jurisdictions

About bluebird's Development Approach

Adaptive Pathways / PRIME

Breakthrough Therapy Designation

Orphan Drug Designation

Phase 1/2 and phase 2/3 studies

Open-label, open-database, single-arm studies

Patients First

Why are real world data important to patients?

- People living with disease don't live life in a clinical trial, nor do their doctors
- They want treatments—transformative ones, as soon as possible

In other words, for the same reasons they are important to us...

Real world evidence:

What it is and why it's important in drug development

Some Definitions

Real World **Data** (RWD)

Data routinely generated in the course of health care delivery

Alternatively defined as any data outside of clinical trials

Real World **Evidence** (RWE)

What you get when you apply rigorous analytics to real world data
--Dave Thompson, INC/Inventiv

RWE addresses needs in:

- Clinical Development
- Regulatory
- Medical Affairs
- Commercial

"A comprehensive data strategy, implemented prelaunch and in partnership with key stakeholders, can make the difference in a product's success or failure – and, more importantly, in patients' lives."

Mike Eaddy, Xcenda

From Data Strategy: The Connective Tissue Required to Bring Cell and Gene Therapies to Market

bluebird uses multiple sources of real world data to support development of gene therapy

Data sources

- Registries
- Observational studies
- Chart reviews
- etc....

Uses of the data

Demonstrate outcomes of current therapies

... to provide regulators and payers with context for gene therapy

Demonstrate long-term outcomes of gene therapy ... to aid in clinical decisionmaking for physicians and patients

... to fulfill regulatory obligations

RWE through the lifecycle

(from European Medicines Agency)

Harlet P. EMA, March 2016

Inheritance of β-Thalassemia

- People with β -thalassemia have little or no functional β globin due to a mutation in the HBB gene¹
- Over 200 disease causing mutations have been identified and grouped into three categories^{1,2}:

Notation	Description
β^0	No β globin production
β+	Reduced β globin production
β ^E	Reduced β globin production Primarily found in Southeast Asia

- Inheritance is autosomal recessive meaning people with β-thalassemia inherit an affected copy of HBB from both parents¹
 - A child of two carrier parents will have a 25% chance of being affected

Image from https://ghr.nlm.nih.gov/handbook/illustrations/autorecessive

Thein SL and Wood WG. In Disorders of Hemoglobin. 2nd edition. 2009. Steinberg MH, et al. (Eds.) Cambridge University Press.

^{1.} Cao A and Galanello R. Genetics in Medicine. 2010;12(2).

Pathophysiology of β-Thalassemia

- Erythropoiesis is the process of creating red blood cells, which are also called erythrocytes
- It typically takes place in bone marrow and requires similar levels of α and β globin chains

Cao A and Galanello R. *Genetics in Medicine*. 2010;12(2). Rivella S. *Blood Rev*. 2012;26:S12–S15.

Image from http://www.sicklecellinfo.net/hemoglobin.htm.

Treatment of β-Thalassemia

• Blood transfusions to replace missing/defective red blood cells are the standard treatment for β -thalassemia^{1,2}

Benefits

- Prolongs life people with severe disease can live into adulthood
- Alleviates symptoms
- Improves how the transfused person feels
- Transfused people will have more energy and the ability to do more activities

Limitations

- Process takes 1-4 hours or longer and requires travel to an infusion center (time off work and school)
- Effects are temporary, regular treatment every few weeks may be needed
- Iron overload needs to be managed with chelation therapy
- Expensive
- Risk for fever, alloimmunity, allergic reactions, and infection
- Despite improvements in care, treatmentassociated complications are the primary challenge in medical management of people with TDT and the leading cause of mortality^{3,4}
- 1. NHLBI. Online Available https://www.nhlbi.nih.gov/health/health-topics/topics/thalassemia/treatment
- 2. Cooley's Anemia Foundation. Online available: http://www.cooleysanemia.org/updates/pdf/GuideToLivingWithThalassemia.pdf
- Tubman et al. J Pedatr Hematol Oncol. 2015:
- 4. Borgna-Pignatti et al. Ann NY Acad Sci. 2005; Ladis et al. Eur J Haematol. 2011

Iron Overload and Chelation Therapy

Organs that may be affected by iron overload

- Iron overload can cause serious, potentially fatal organ damage
- The chelation therapies have a high burden of treatment that may lead to poor compliance^{1,2}
- Deferoxamine DFO
 - Subcutaneous administration with a pump for 8-12 hours a day, 5-7 days a week (or more)
 - May result in skin reactions, blurry vision, and hearing loss
- Deferiprone DFP
 - An oral tablet taken 3 times per day
- May result in nausea, vomiting, abdominal pain, joint pain, and reduction in immune cells
- Deferasirox DFX
 - Multiple oral formulations available, including once-daily oral tablet and dispersible tablets
 - May result in kidney, liver, and GI dysfunction

Children's Hospital and Research Center Oakland. Online Available http://thalassemia.com/documents/SOCGuidelines2012.pdf
 Galanello R and Origa R. Orphanet Journal of Rare Diseases. 2010;5:11

HSCT in Thalassemia

- HSCT is the only curative therapy for β-thalassemia, but is associated with serious risks
- Using modern regimens, transplant related mortality has fallen to ≤5% in low risk cases¹
- Rare: >3000 transplants from 1981-2010², but hundreds of thousands of people with β -thalassemia born in that time period
- Why so few?
 - Risks of the procedure
 - No available HI A-matched donor
 - Patients may choose transfusion and chelation
 - Age and health status of the recipient
 - Cost and availability of transplant

Outcomes from 1493 HSCT, in TDT, between 2000 and 2010 (30 countries data)²

		A) OS		B) EFS	
	Patients	Events	2-yrs. OS	Events	2-yrs. pEFS
a) < 2 years	66	3	0.95±0.03	4	0.93±0.03
b) 2-<5 years	266	13	0.94±0.02	32	0.86±0.03
c) 5-<10 years	352	33	0.90±0.02	52	0.83±0.02
d) 10-<14 years	197	8	0.96±0.02	24	0.86±0.03
e) 14-<18 years	97	14	0.82±0.04	20	0.74±0.05
f) <u>≥</u> 18 years	82	16	0.80±0.05	18	0.76±0.05
P-value (for trend)		<0.001		<0.001	

Angelucci E. ASH Education Book. 2010;1:456-462
 Angelucci et al. Haematologica. 2014;99(5).

^{3.} Baronciani D et al, Bone Marrow Transplantation (2016) 536 - 541

Epidemiology of β-Thalassemia

- Globally, 80-90 million people (1.5% of the population) are carriers of β-thalassemia¹
- More than 40,000 babies with β-thalassemia are born each year²
- Migration is changing the distribution of people with the disease³

Data from Colah R. et al.

- 1. Colah R, et al. Expert Rev Hematol. 2010;3(1):103-117.
- 2. Modell B and Darlison M. Bulletin of the World Health Organization 2008;86:480-487
- 3. Angastiniotis M, et al. The Scientific World Journal. 2013. Online available http://dx.doi.org/10.1155/2013/727905

Transfusion-dependent Thalassemia (TDT) in Italy

- β -Thalassemia is an important public health challenge in Italy; > 7,000 β thalassemia patients in Italy require transfusion¹
- TDT is most prevalent in Sicily, Sardinia, and Puglia
- However, TDT patients are presents in other 10 Italian Regions

Italian Thalassemia clinical and registry landscape

- Currently, only multiregional databases and registries are available
- Some of those data are not published in peer-reviewed journals, but only on regional websites (i.e. the Sicilian Registry)
 - There is no active national registry

CMRO

population

Rosa Conte, Lucia Ruggieri, Ariann Baiardi, Donato Bonifazi, Fedele Bo Giannuzzi, Rosa Padula, Alessia Pe Del Vecchio, Aurelio Maggio, Aldo I Adriana Ceci

To cite this article: Rosa Conte, Lucia Rugg Baiardi, Donato Bonifazi, Fedele Bonifazi, N Alessia Pepe, Maria Caterina Putti, Giovanni Angela Jacono, Laura Mangiarini & Adriana registry: Centers characteristics, services, DOI: 10.1080/10245332.2015.1101971

To link to this article: http://dx.doi.org/10

Current Medical Research and Opinion

ISSN: 0300-7995 (Print) 1473-4877 (Online) Journal homepage: http://www.tandfonline.com/loi/icmo20

Complications pattern and burden of the disease in patients affected by beta-thalassaemia major

Fedele Bonifazi, Rosa Conte, Paola Baiardi, Donato Bonifazi, Mariagrazia

Felisi, Paola Giordano, Viviana Giannuzzi, Alessia Pepe, Maria Caterina Putti, Lucia R Vecchio, Aldo Filosa, Aurelio Maggio, Adria THAL Multiregional Registry, funded by the Fondazione Giambrone

To cite this article: Fedele Bonifazi, Rosa Conte, Pao Felisi, Paola Giordano, Viviana Giannuzzi, Angela Iaco Caterina Putti. Lucia Ruggieri. Giovanni Carlo Del Vec Ceci & on behalf of the HTA-THAL Multiregional Regis Health and Fondazione Giambrone (2017): Complicat in patients affected by beta-thalassaemia major. Curre 10.1080/03007995.2017.1326890

To link to this article: http://dx.doi.org/10.1080/03

REPUBBLICA ITALIANA

Regione Siciliana

ASSESSORATO DELLA SALUTE

Dipartimento Regionale per le Attività Sanitarie e Osservatorio Epidemiologico

Servizio 9 "Sorveglianza ed epidemiologia valutativa" U.O. "Registri e Screening Oncologici e di popolazione"

Prot. n. 60362

Palermo, 20/07/2017

Oggetto: Registro Siciliano Talassemia ed Emoglobinopatie (RESTE) - Aggiornamento al 31/12/2016

Piga A. et al, British Journal of Haematology 2013; Conte R. et al., Hematology 2016; Bonifazi F. et al., Current Medical Research and Opinion, 2017;

http://pti.regione.sicilia.it/portal/page/portal/PIR PORTALE/PIR LaStrutturaRegionale/PIR AssessoratoSalu te/PIR AreeTematiche/PIR Epidemiologia/PIR RESTETalassemie/registro talassemia al 2016.pdf

matologia e Trasfusi 18, Rovigo, 6U.O.S. di Talassi Siracusa, Lentini, ⁷Centro Tra-

Ospedale Civile di Alghero, Algh

Operativa Dipartimentale Tala

Luigi-Curro, ARNAS Garibaldi,

Dipartimento Scienze Biomed

Biotecnologie, Università di Cas Regionale Microcitemie, Caglie

Developing Gene Therapy for TDT in the EMA's Adaptive Pathways Program

About the Program

A prospectively planned, iterative approach to bringing medicines to market. It initially targets development to a well-defined group of patients likely to benefit most, then uses iterative phases of evidence gathering and progressive licensing adaptations to expand use to a wider population.

Purpose

Improve timely access for patients to new medicines

Three Main Elements

- 1. Iterative development
- 2. Gathering evidence through real-life use to supplement clinical trial data
- Early involvement of patients and health-technologyassessment bodies

Example Project:

Retrospective Database Analyses of Current TDT Therapies

Key Questions about Current TDT Therapies

- What are the outcomes of transfusion/chelation therapy and allo-HSCT?
- What is the disease burden and progression during these treatments?
- What risk factors predict disease progression?

Overview of Study

Design

Retrospective, longitudinal data analyses

Inclusion Criteria

- Confirmed diagnosis of β-thalassemia
- Known transfusion status
- Retrospective data available for 2+ years

Data Elements

- Patient demographics
- Treatments (allo-HSCT, transfusion/chelation)
- Clinical outcomes
- Quality of life

Collaborators

- several centers of thalassemia care in EU
- European Society for Blood & Marrow Transplant
- Thalassemia Longitudinal Cohort (Primarily US)

Example Project:

Retrospective Database Analyses of Current TDT Therapies

Project steps and approximate duration

Step	Duration			
Develop protocol and statistical analysis plan	2-3 months			
Ethics and institutional approvals	4-6 months			
Data extraction	2-4 months			
Data analyses	2 months			
Report development	2 months			
Publication: To be determined in consultation with the investigators				

Example Project:

Retrospective Database Analyses of Current TDT Therapies

Collaborating Centers in Italy

M.I.O.T.

Myocardial Iron Overload
in Thalassemia

HTA-Thal
Italian Multiregional
Thalassemia Registry

Retrospective database analyses are challenging

- Pre-existing informed consents may limit or prohibit access
- Lengthy processes for institutional and ethical reviews require advance planning
- Many academic centers have limited resources to support these types of projects
- Aggregating data across multiple centers requires clinical insights from each center and careful interpretation

Retrospective database analyses are challenging

- Pre-existing informed consents may limit or prohibit access
- Lengthy processes for institutional and ethical reviews require advance planning
- Many academic centers have limited resources to support these types of projects
- Aggregating data across multiple centers requires clinical insights from each center and careful interpretation

... but may help improve patient lives

Thank you!

Gabriella Pasciullo GPasciullo@bluebirdbio.com